Information Papers

31 results for Information paper and Farm Energy Innovation Program (EEIG)
Solar PV pumping systems

Solar PV pumping systems

Solar pumping can help offset the cost of traditional irrigation fuels. The more often a pump is run, the greater the opportunity for savings from solar. Solar pumps are reliant exclusively on the sun to provide power and therefore operate only during daylight hours unless coupled with battery/storage systems. Solar pumps may be a good option for lower water volume and daytime irrigation systems. As yet, affordable solar technology is unable to supply sufficient power to pump enough water for large-scale flood irrigation.
Published 3rd Jun 2014
Maintaining pumps saves energy

Maintaining pumps saves energy

Pump efficiency deteriorates over time, leading to energy wastage. Efficiency losses of between five and 15 per cent can occur after 10 years of operation. When pumps are maintained to restore efficiency close to its original point, significant energy savings can be achieved. Typically, a pump overhaul includes: replacement of wear rings, seals, bearings and if worn, the impeller; cleaning of internals; blast cleaning of externals; and applying new epoxy coating.
Published 12th Jun 2014
Oversized pumps waste energy

Oversized pumps waste energy

Irrigation pumps are typically over-specified at the design stage, resulting in significantly higher power consumption and operating costs. A pump is generally oversized when it is not operated at or within 20 percent of its best efficiency point (BEP), although it is normally considered acceptable if the duty point falls within 50 and 110 percent of the BEP flow rate. By replacing oversized pumps with smaller ones, energy and maintenance savings can be achieved due to lower power consumption requirements and less wear and tear.
Published 12th Jun 2014
Variable speed drives on pumps

Variable speed drives on pumps

The installation of variable speed drives (VSDs) on pumps can be an effective energy-saving measure. Lowering the speed of a motor by just 20 percent can produce an energy saving of up to 50 percent. Variable speed drives can be installed on all pumps, including those associated with HVAC systems. The VSD needs to be connected to a control signal and may also require installation of measurement devices or controllers, which typically are included in costing. The financial viability of installing a VSD depends on the motor application and operating hours. VSDs tend to be most economical when used on large pumps.
Published 12th Jun 2014
Advanced controls on grain dryers

Advanced controls on grain dryers

Manual control in grain drying operations with large variations in moisture often leads to significant overdrying or underdrying, and is highly inefficient from an energy point of view. Feedback-based automatic controllers can help to minimise energy consumption by controlling energy inputs more precisely to meet the needs of the product being processed. While preservation of grain quality is the primary benefit, energy savings of up to 20 percent can be achieved.
Published 13th Jun 2014
Compressed air: leak reduction

Compressed air: leak reduction

Leakage accounts for nearly one third of compressed-air energy consumption. A proactive leak repair and maintenance program should be followed for compressed-air systems. Applying repair and maintenance measures in a sustainable manner requires regular inspection and assessment of your system and engagement with equipment operators. The upside is that energy savings of up to 80 percent can be achieved.
Published 13th Jun 2014
Energy efficient cool rooms and refrigeration

Energy efficient cool rooms and refrigeration

Chilling and refrigeration can account for more than half of a farm’s energy use. Cold chain technology has improved markedly over the past decade and the range of opportunities for farmers to save energy has expanded. This fact sheet provides an outline of the energy-saving opportunities in cooling and refrigeration, and details areas in which upgrades can improve the quality of your produce and its farm-gate value.
Published 13th Jun 2014
Energy-efficient farm lighting

Energy-efficient farm lighting

Upgrading farm lighting equipment can achieve energy savings for relatively low investment and should be considered by most farm businesses. Reductions in lighting energy use of 82 percent can be made. Which specific solution best suit your needs will depends on a number of factors. Generally, retrofitting requires less up-front capital and is simpler, but installing a new system is more cost-effective in buildings that contain older equipment. Full replacement of your lighting can also be economical where improvements in technology have led to price reductions.
Published 13th Jun 2014
Energy-efficient heating in poultry sheds

Energy-efficient heating in poultry sheds

The main heating technologies used in poultry sheds are radiant and air heaters. Various factors need to be considered in determining the most effective and efficient technology for poultry sheds. Assuming similar combustion efficiencies within heaters, radiant and infra-red technologies will have inherently lower energy costs and may be 15 to 30 percent more efficient than brooder heaters. Alternative heating technologies, while less commonly used in poultry sheds than radiant and air heaters, may also be worth considering.
Published 13th Jun 2014
Energy-efficient poultry shed ventilation

Energy-efficient poultry shed ventilation

Mechanical ventilation can optimise the transfer of temperature and the removal of harmful gasses from poultry production facilities. Setting controls to regulate air exchange automatically will allow sheds to maintain desired temperatures with minimal loss of conditioned air. Reducing the loss of conditioned air within facilities enables the maintenance of optimal temperature without requiring as much energy for heating and cooling.
Published 13th Jun 2014

Pages